Software System Design and Implementation

Machine-checked Properties

Gabriele Keller

Manuel Chakravarty

The University of New South Wales
School of Computer Science and Engineering
Sydney, Australia

COMP3141 17s1

Checking properties

 Logical properties are key to specifying the intended meaning of programs
> Types,
» QuickCheck properties,
» Hoare triples,
» and SO on

- How can computers help to check these properties?

Checking properties dynamically

 Property-based testing (QuickCheck)
» Properties as program fragments

» Randomised test case generation

Checking properties dynamically

 Assertions
» Assertions in design by contract (Eiffel, D, Ada)
» specify pre- & postconditions of methods
» invariants of objects
» assertions can be extracted as documentation

» Evaluating properties during program execution (testing & debugging)

Checking properties statically

 Proof checkers (theorem provers)

» In general, (at least parts of) proofs need to be supplied manually
- Static analysis

» Abstract interpretation, flow analysis, and so on
 Type checking

» Types are properties

» Type checking is a form of theorem proving (decidable logic)

Hybrid approaches

- Contracts
» May be checked statically or dynamically

» Possibly static checking delaying checking of residual properties until
runtime

- Gradual typing
» Statically checks for type errors in some parts of a program

» Leaves other parts to be checked dynamically

Compiler integration provides extra leverage

- Compiler-checked properties are automatically checked on every compiler
run

» Cannot diverge from source code

» Provide checked documentation

« Types

» Are used and understood by every develops

» Are tightly integrated with the language

Generalised Algebraic Data Types

GADTs

- Also called indexed data types

- Use of a type argument to specify a property of the data type

» E.g., a datatype of expression terms with the type of the expression as
a type argument

- Simultaneously restricts the values of the GADT

» E.g., a list type indexed by the length of the list

Motivating example: a type-safe evaluator

data Expr
= BConst Bool
IConst Int

Times Expr Expr -- arguments must be of type Int
If Expr Expr Expr -- 1stargument must be a Bool,

— 2nd & 3rd of same type

Evaluation resyjt

: s
data Value = IVal Int : y
| BVal Bool | Ty

data Expr data Result

= BConst Bool = IVal Int
IConst Int | BVal Bool
Times Expr Expr

Less Expr Expr

And Expr Expr

If Expr Expr Expr

eval :: Expr —> Result
eval (IConst n)
= IVal n
eval (BConst b)
= BVal b
eval (Times ex1l ex2)
= case (eval exl1l, eval ex2) of
(IVal n1, IVal n2) —> IVal (nl1 + n2)
(_, _) —> error "illegal expr"

- The evaluated expressions are dynamically typed (like, say, Python programs)

 During evaluation, we check that operators (e.g., addition) receive operands
of compatible type

- If the types are not compatible, we yield a runtime error (or exception)

Strongly typed languages:

eval

Expr"VWH “Result

greaomdi&ww gos&&omdi&iaw
Lv\pu& ts an Expr EMFmE ts a Result

tavariant:
any value of type Expr
indeed valid object of that type.

£.9.,
BConst 5
s&a&iaatbj excluded

Type checker ensures
 precondition observed whenever function is called
* Invariants hold at any time during program execution

» postcondition holds after every call of the function (no guarantee
for non-termination, or in case of run-time error) _

YYYYYY e AUSTRALIA

Strongly typed languages:

eval

Expr"ww» Result

greacndi&iow gos&tamd&mw
Lmyu& ts an Expr anu& ts a Result
tavariank:

any value of type Expr
indeed valid object of that type.

£,
BConst 5

sEaELaQLLv excluded

To get the most out of the type checker, we need to
- make functions total, if feasible

* make types as precise as possible

Key idea

- Parametrise expressions by the type of value they evaluate to

» Expressions have unique types (don't change during evaluation)

» Expression of type T evaluates to a value of type T

 In Haskell: Expr t is an expression of type t

Type indices

* The type argument t in Expr tis atype index
» Type indices constraint the formation of values
» The type checker rejects malformed terms; e.qg.,
If (Const 1) (Const 2) (Const 3) --type error!

» Our expressions can only have the types Expr Int and Expr Bool

If i Expr Bool -> Expr s -> Expr s -> Expr s

Calculating with types

Singleton types

 Indexed type, where the type index uniquely identifies the value
» As types are sets of values, singleton types are one-element sets

 Let's look at an example: singleton Booleans

Vaniiig
data Bool whep'\\\ ?O/eans

False :: Bool \

True :: Bool
Sin
g/eto
data SBool (b :: Bool) wlh&\n BOO/eanS
SFalse :: SBool False \
STrue :: SBool True

- If a function returns a value of type SBool False, we know the return value
without executing the function (modulo non-termination)

 Singleton types enable us to reflect values to the type level

- Why is this useful?

» Stronger types characterise the behaviour of a program more precisely

» Haskell type checker as proof checker

Values, Types, and Kinds in plain Haskell

- Values (including functions and data constructors) have types

« Types and type constructors have kinds

Typeg

Kindg

Maybe :: * -> *

s Maybe Bool :: *

a -> a-> Bool :: *

s Int

Just:: a -> Maybe a

True :: Bool Valueg

Just True:: Maybe Bool

t: a -> a-> Bool

Singleton natural numbers

- We can characterise the set of natural numbers inductively as follows
» Zero (0) is a natural number
» If nis a natural number, the successor of n (n + 1) is a natural number

* This characterisation is based on the Peano axioms of natural numbers

data Nat where data Nat
Z :: Nat =7
S :: Nat —> Nat | S Nat

data SNat (n :: Nat) where
Zero :: SNat Z
Succ :: SNat m -> SNat (S m)

With data kinds:

« Now, kinds and types overlap (e.g., Nat can be used both as a
type and a kind)

Dependent Types

Kinde & Data Kindg

SNat Z2 :: *

Nat :: *
Z :: Nat

SNat:: Nat ->*

Valueg

S(S Z)::Nat

s Nat -> Nat

Let's take a step back — types versus values

 Types are static; values are dynamic

 Type erasure property: types don't impact a program's semantics

 Types characterise part of a programs behaviour:
» Each value has a unique type, but usually a type stands for many values
» In contrast: a singleton types has a unique value

-+ Singleton types lift data from the value to the type level

- How about computations (functions) on the type level?

Type families

* There are two forms of type families in Haskell

» Type synonym families: effectively provide functions on types

» Data type families: essentially are a form of open (or, extensible) GADTs
- We will focus on type synonym families, which differ from value functions:

» They need to be terminating — how do we know (halting problem)?

» Limited syntax and obviously no side effects

» They are extensible (like type classes)

Computing with types

- With type families, we can define arithmetic operations on type-level
numerals

- We can also tie type-level to value-level computations

type family (+) (n :: Nat) (m :: Nat) :: Nat

