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Machine-checked Properties



Checking properties

• Logical properties are key to specifying the intended meaning of programs


‣ Types,


‣ QuickCheck properties,


‣ Hoare triples,


‣ and so on


• How can computers help to check these properties?



Checking properties dynamically

• Property-based testing (QuickCheck)


‣ Properties as program fragments


‣ Randomised test case generation



Checking properties dynamically

• Assertions


‣ Assertions in design by contract (Eiffel, D, Ada)


‣ specify pre- & postconditions of methods


‣ invariants of objects


‣ assertions can be extracted as documentation


‣ Evaluating properties during program execution (testing & debugging)



Checking properties statically

• Proof checkers (theorem provers)


‣ In general, (at least parts of) proofs need to be supplied manually


• Static analysis


‣ Abstract interpretation, flow analysis, and so on


• Type checking


‣ Types are properties


‣ Type checking is a form of theorem proving (decidable logic)



Hybrid approaches

• Contracts


‣ May be checked statically or dynamically


‣ Possibly static checking delaying checking of residual properties until 
runtime


• Gradual typing


‣ Statically checks for type errors in some parts of a program


‣ Leaves other parts to be checked dynamically



Compiler integration provides extra leverage

• Compiler-checked properties are automatically checked on every compiler 
run


‣ Cannot diverge from source code


‣ Provide checked documentation


• Types


‣ Are used and understood by every developer


‣ Are tightly integrated with the language

Let's look at some 
particularily 

expressive types 



Generalised Algebraic Data Types



GADTs

• Also called indexed data types


• Use of a type argument to specify a property of the data type


‣ E.g., a datatype of expression terms with the type of the expression as 
a type argument


• Simultaneously restricts the values of the GADT


‣ E.g., a list type indexed by the length of the list



Motivating example: a type-safe evaluator

data Expr  
  = BConst Bool 
  | IConst Int 
  | Times Expr Expr  -- arguments must be of type Int 
  | If    Expr Expr Expr  -- 1st argument must be a Bool,  
                          — 2nd & 3rd of same type

  data Value = IVal  Int 
             | BVal Bool

Evaluation result

Informal type constraints

  eval :: Expr -> ???Result

Expression evaluation



 data Expr  
  = BConst Bool 
  | IConst Int 
  | Times Expr Expr 
  | Less  Expr Expr 
  | And   Expr Expr  
  | If    Expr Expr Expr

data Result 
  = IVal Int
  | BVal Bool

eval :: Expr -> Result 
eval (IConst n) 
  = IVal n 
eval (BConst b) 
  = BVal b 
eval (Times ex1 ex2)   
  = case (eval ex1, eval ex2) of 
      (IVal n1, IVal n2) -> IVal (n1 + n2)   
      (_, _)             -> error "illegal expr" 
    …



• The evaluated expressions are dynamically typed (like, say, Python programs)


• During evaluation, we check that operators (e.g., addition) receive operands 
of compatible type


• If the types are not compatible, we yield a runtime error (or exception)



eval

Expr Result
precondition: 

input is an Expr
postcondition: 

input is a Result

Strongly typed languages:

invariant: 
any value of type Expr 

indeed valid object of that type. 
E.g.,   

BConst 5 
statically excluded 

Type checker ensures

• precondition observed whenever function is called

• invariants hold at any time during program execution

• postcondition holds after every call of the function (no guarantee 

for non-termination, or in case of run-time error)



eval

Expr Result
precondition: 

input is an Expr
postcondition: 

input is a Result

Strongly typed languages:

invariant: 
any value of type Expr 

indeed valid object of that type. 
E.g.,   

BConst 5 
statically excluded 

To get the most out of the type checker, we need to 

• make functions total, if feasible

• make types as precise as possible


If (IConst 5) (IConst True) (IConst 2) 



• Parametrise expressions by the type of value they evaluate to


‣ Expressions have unique types (don't change during evaluation)


‣ Expression of type τ evaluates to a value of type  τ


• In Haskell: Expr t is an expression of type t

Key idea

Define type expressions 
as a data type & adapt 

the evaluator 



Type indices

• The type argument t in Expr t is a type index


‣ Type indices constraint the formation of values


‣ The type checker rejects malformed terms; e.g.,


If (Const 1) (Const 2) (Const 3)    -- type error!


‣ Our expressions can only have the types Expr Int and Expr Bool



Calculating with types



Singleton types

• Indexed type, where the type index uniquely identifies the value


‣ As types are sets of values, singleton types are one-element sets


• Let's look at an example: singleton Booleans

  data SBool (b :: Bool) where 
    SFalse :: SBool False 
    STrue  :: SBool True

  data Bool where 
    False :: Bool 
    True  :: Bool

Vanilla Booleans

Singleton Booleans



• If a function returns a value of type SBool False, we know the return value 
without executing the function (modulo non-termination)


• Singleton types enable us to reflect values to the type level


• Why is this useful?


‣ Stronger types characterise the behaviour of a program more precisely


‣ Haskell type checker as proof checker



• Values (including functions and data constructors) have types

• Types and type constructors have kinds 

Values, Types, and Kinds in plain Haskell

*
* -> *

* -> * -> *

Kinds
Int :: *

Bool :: *

a -> a-> Bool :: *

Maybe :: * -> *

Maybe Bool :: *

Types

5 :: Int

True :: Bool

(==):: a -> a-> Bool

Just:: a -> Maybe a

Just True:: Maybe Bool
Values



• We can characterise the set of natural numbers inductively as follows


‣ Zero (0) is a natural number


‣ If n is a natural number, the successor of n (n + 1) is a natural number


• This characterisation is based on the Peano axioms of natural numbers

Singleton natural numbers

  data Nat where 
    Z :: Nat 
    S :: Nat -> Nat

  data Nat  
    = Z 
    | S Nat



• Now, kinds and types overlap (e.g., Nat can be used both as a 
type and a kind)

With data kinds:

*
Nat -> *

Nat

Kinds & Data Kinds
SNat Z :: *

SNat:: Nat ->*

Nat :: *

Dependent Types

5 :: Int

S(S Z)::Nat

S Z:: Nat

Z:: Nat

S :: Nat -> Nat
Values

Z :: Nat*->*



Let's take a step back — types versus values

• Types are static; values are dynamic


• Type erasure property: types don't impact a program's semantics


• Types characterise part of a programs behaviour:


‣ Each value has a unique type, but usually a type stands for many values


‣ In contrast: a singleton types has a unique value


• Singleton types lift data from the value to the type level


• How about computations (functions) on the type level?



Type families

• There are two forms of type families in Haskell


‣ Type synonym families: effectively provide functions on types


‣ Data type families: essentially are a form of open (or, extensible) GADTs


• We will focus on type synonym families, which differ from value functions:


‣ They need to be terminating — how do we know (halting problem)?


‣ Limited syntax and obviously no side effects


‣ They are extensible (like type classes)



Computing with types

• With type families, we can define arithmetic operations on type-level 
numerals


• We can also tie type-level to value-level computations

Addition on SNat 


