
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

Manuel Chakravarty

COMP3141 17s1

Machine-checked Properties

Checking properties

• Logical properties are key to specifying the intended meaning of programs

‣ Types,

‣ QuickCheck properties,

‣ Hoare triples,

‣ and so on

• How can computers help to check these properties?

Checking properties dynamically

• Property-based testing (QuickCheck)

‣ Properties as program fragments

‣ Randomised test case generation

Checking properties dynamically

• Assertions

‣ Assertions in design by contract (Eiffel, D, Ada)

‣ specify pre- & postconditions of methods

‣ invariants of objects

‣ assertions can be extracted as documentation

‣ Evaluating properties during program execution (testing & debugging)

Checking properties statically

• Proof checkers (theorem provers)

‣ In general, (at least parts of) proofs need to be supplied manually

• Static analysis

‣ Abstract interpretation, flow analysis, and so on

• Type checking

‣ Types are properties

‣ Type checking is a form of theorem proving (decidable logic)

Hybrid approaches

• Contracts

‣ May be checked statically or dynamically

‣ Possibly static checking delaying checking of residual properties until
runtime

• Gradual typing

‣ Statically checks for type errors in some parts of a program

‣ Leaves other parts to be checked dynamically

Compiler integration provides extra leverage

• Compiler-checked properties are automatically checked on every compiler
run

‣ Cannot diverge from source code

‣ Provide checked documentation

• Types

‣ Are used and understood by every developer

‣ Are tightly integrated with the language

Let's look at some
particularily

expressive types

Generalised Algebraic Data Types

GADTs

• Also called indexed data types

• Use of a type argument to specify a property of the data type

‣ E.g., a datatype of expression terms with the type of the expression as
a type argument

• Simultaneously restricts the values of the GADT

‣ E.g., a list type indexed by the length of the list

Motivating example: a type-safe evaluator

data Expr
 = BConst Bool
 | IConst Int
 | Times Expr Expr -- arguments must be of type Int
 | If Expr Expr Expr -- 1st argument must be a Bool,
 — 2nd & 3rd of same type

 data Value = IVal Int
 | BVal Bool

Evaluation result

Informal type constraints

 eval :: Expr -> ???Result

Expression evaluation

 data Expr
 = BConst Bool
 | IConst Int
 | Times Expr Expr
 | Less Expr Expr
 | And Expr Expr
 | If Expr Expr Expr

data Result
 = IVal Int
 | BVal Bool

eval :: Expr -> Result
eval (IConst n)
 = IVal n
eval (BConst b)
 = BVal b
eval (Times ex1 ex2)
 = case (eval ex1, eval ex2) of
 (IVal n1, IVal n2) -> IVal (n1 + n2)
 (_, _) -> error "illegal expr"
 …

• The evaluated expressions are dynamically typed (like, say, Python programs)

• During evaluation, we check that operators (e.g., addition) receive operands
of compatible type

• If the types are not compatible, we yield a runtime error (or exception)

eval

Expr Result
precondition:

input is an Expr
postcondition:

input is a Result

Strongly typed languages:

invariant:
any value of type Expr

indeed valid object of that type.
E.g.,

BConst 5
statically excluded

Type checker ensures

• precondition observed whenever function is called

• invariants hold at any time during program execution

• postcondition holds after every call of the function (no guarantee

for non-termination, or in case of run-time error)

eval

Expr Result
precondition:

input is an Expr
postcondition:

input is a Result

Strongly typed languages:

invariant:
any value of type Expr

indeed valid object of that type.
E.g.,

BConst 5
statically excluded

To get the most out of the type checker, we need to

• make functions total, if feasible

• make types as precise as possible

If (IConst 5) (IConst True) (IConst 2)

• Parametrise expressions by the type of value they evaluate to

‣ Expressions have unique types (don't change during evaluation)

‣ Expression of type τ evaluates to a value of type τ

• In Haskell: Expr t is an expression of type t

Key idea

Define type expressions
as a data type & adapt

the evaluator

Type indices

• The type argument t in Expr t is a type index

‣ Type indices constraint the formation of values

‣ The type checker rejects malformed terms; e.g.,

If (Const 1) (Const 2) (Const 3) -- type error!

‣ Our expressions can only have the types Expr Int and Expr Bool

Calculating with types

Singleton types

• Indexed type, where the type index uniquely identifies the value

‣ As types are sets of values, singleton types are one-element sets

• Let's look at an example: singleton Booleans

 data SBool (b :: Bool) where
 SFalse :: SBool False
 STrue :: SBool True

 data Bool where
 False :: Bool
 True :: Bool

Vanilla Booleans

Singleton Booleans

• If a function returns a value of type SBool False, we know the return value
without executing the function (modulo non-termination)

• Singleton types enable us to reflect values to the type level

• Why is this useful?

‣ Stronger types characterise the behaviour of a program more precisely

‣ Haskell type checker as proof checker

• Values (including functions and data constructors) have types

• Types and type constructors have kinds

Values, Types, and Kinds in plain Haskell

*
* -> *

* -> * -> *

Kinds
Int :: *

Bool :: *

a -> a-> Bool :: *

Maybe :: * -> *

Maybe Bool :: *

Types

5 :: Int

True :: Bool

(==):: a -> a-> Bool

Just:: a -> Maybe a

Just True:: Maybe Bool
Values

• We can characterise the set of natural numbers inductively as follows

‣ Zero (0) is a natural number

‣ If n is a natural number, the successor of n (n + 1) is a natural number

• This characterisation is based on the Peano axioms of natural numbers

Singleton natural numbers

 data Nat where
 Z :: Nat
 S :: Nat -> Nat

 data Nat
 = Z
 | S Nat

• Now, kinds and types overlap (e.g., Nat can be used both as a
type and a kind)

With data kinds:

*
Nat -> *

Nat

Kinds & Data Kinds
SNat Z :: *

SNat:: Nat ->*

Nat :: *

Dependent Types

5 :: Int

S(S Z)::Nat

S Z:: Nat

Z:: Nat

S :: Nat -> Nat
Values

Z :: Nat*->*

Let's take a step back — types versus values

• Types are static; values are dynamic

• Type erasure property: types don't impact a program's semantics

• Types characterise part of a programs behaviour:

‣ Each value has a unique type, but usually a type stands for many values

‣ In contrast: a singleton types has a unique value

• Singleton types lift data from the value to the type level

• How about computations (functions) on the type level?

Type families

• There are two forms of type families in Haskell

‣ Type synonym families: effectively provide functions on types

‣ Data type families: essentially are a form of open (or, extensible) GADTs

• We will focus on type synonym families, which differ from value functions:

‣ They need to be terminating — how do we know (halting problem)?

‣ Limited syntax and obviously no side effects

‣ They are extensible (like type classes)

Computing with types

• With type families, we can define arithmetic operations on type-level
numerals

• We can also tie type-level to value-level computations

Addition on SNat

