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Checking properties

 Logical properties are key to specifying the intended meaning of programs
> Types,
» QuickCheck properties,
» Hoare triples,
» and SO on

- How can computers help to check these properties?




Checking properties dynamically

 Property-based testing (QuickCheck)
» Properties as program fragments

» Randomised test case generation




Checking properties dynamically

 Assertions
» Assertions in design by contract (Eiffel, D, Ada)
» specify pre- & postconditions of methods
» invariants of objects
» assertions can be extracted as documentation

» Evaluating properties during program execution (testing & debugging)




Checking properties statically

 Proof checkers (theorem provers)

» In general, (at least parts of) proofs need to be supplied manually
- Static analysis

» Abstract interpretation, flow analysis, and so on
 Type checking

» Types are properties

» Type checking is a form of theorem proving (decidable logic)




Hybrid approaches

- Contracts
» May be checked statically or dynamically

» Possibly static checking delaying checking of residual properties until
runtime

- Gradual typing
» Statically checks for type errors in some parts of a program

» Leaves other parts to be checked dynamically




Compiler integration provides extra leverage

- Compiler-checked properties are automatically checked on every compiler
run

» Cannot diverge from source code

» Provide checked documentation

« Types

» Are used and understood by every develops

» Are tightly integrated with the language




Generalised Algebraic Data Types




GADTs

- Also called indexed data types

- Use of a type argument to specify a property of the data type

» E.g., a datatype of expression terms with the type of the expression as
a type argument

- Simultaneously restricts the values of the GADT

» E.g., a list type indexed by the length of the list




Motivating example: a type-safe evaluator

data Expr
= BConst Bool
IConst Int

Times Expr Expr -- arguments must be of type Int
If Expr Expr Expr -- 1stargument must be a Bool,

— 2nd & 3rd of same type

Evaluation resyjt

: s
data Value = IVal Int : y
| BVal Bool | Ty




data Expr data Result

= BConst Bool = IVal Int
IConst Int | BVal Bool
Times Expr Expr

Less Expr Expr

And Expr Expr

If Expr Expr Expr

eval :: Expr —> Result
eval (IConst n)
= IVal n
eval (BConst b)
= BVal b
eval (Times ex1l ex2)
= case (eval exl1l, eval ex2) of
(IVal n1, IVal n2) —> IVal (nl1 + n2)
(_, _) —> error "illegal expr"




- The evaluated expressions are dynamically typed (like, say, Python programs)

 During evaluation, we check that operators (e.g., addition) receive operands
of compatible type

- If the types are not compatible, we yield a runtime error (or exception)




Strongly typed languages:

eval

Expr"VWH “Result

greaomdi&ww gos&&omdi&iaw
Lv\pu& ts an Expr EMFmE ts a Result

tavariant:
any value of type Expr
indeed valid object of that type.

£.9.,
BConst 5
s&a&iaatbj excluded

Type checker ensures
 precondition observed whenever function is called
* Invariants hold at any time during program execution

» postcondition holds after every call of the function (no guarantee
for non-termination, or in case of run-time error) _
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Strongly typed languages:

eval

Expr"ww» Result

greacndi&iow gos&tamd&mw
Lmyu& ts an Expr anu& ts a Result
tavariank:

any value of type Expr
indeed valid object of that type.

£,
BConst 5

sEaELaQLLv excluded

To get the most out of the type checker, we need to
- make functions total, if feasible

* make types as precise as possible




Key idea

- Parametrise expressions by the type of value they evaluate to

» Expressions have unique types (don't change during evaluation)

» Expression of type T evaluates to a value of type T

 In Haskell: Expr t is an expression of type t




Type indices

* The type argument t in Expr tis atype index
» Type indices constraint the formation of values
» The type checker rejects malformed terms; e.qg.,
If (Const 1) (Const 2) (Const 3) --type error!

» Our expressions can only have the types Expr Int and Expr Bool

If i Expr Bool -> Expr s -> Expr s -> Expr s




Calculating with types




Singleton types

 Indexed type, where the type index uniquely identifies the value
» As types are sets of values, singleton types are one-element sets

 Let's look at an example: singleton Booleans

Vaniiig
data Bool whep'\\\ ?O/eans

False :: Bool \

True :: Bool
Sin
g/eto
data SBool (b :: Bool) wlh&\n BOO/eanS
SFalse :: SBool False \
STrue :: SBool True




- If a function returns a value of type SBool False, we know the return value
without executing the function (modulo non-termination)

 Singleton types enable us to reflect values to the type level

- Why is this useful?

» Stronger types characterise the behaviour of a program more precisely

» Haskell type checker as proof checker




Values, Types, and Kinds in plain Haskell

- Values (including functions and data constructors) have types

« Types and type constructors have kinds

Typeg

Kindg

Maybe :: * -> *

s Maybe Bool :: *

a -> a-> Bool :: *

s Int

Just:: a -> Maybe a

True :: Bool Valueg

Just True:: Maybe Bool

t: a -> a-> Bool




Singleton natural numbers

- We can characterise the set of natural numbers inductively as follows
» Zero (0) is a natural number
» If nis a natural number, the successor of n (n + 1) is a natural number

* This characterisation is based on the Peano axioms of natural numbers

data Nat where data Nat
Z :: Nat =7
S :: Nat —> Nat | S Nat

data SNat (n :: Nat) where
Zero :: SNat Z
Succ :: SNat m -> SNat (S m)




With data kinds:

« Now, kinds and types overlap (e.g., Nat can be used both as a
type and a kind)

Dependent Types

Kinde & Data Kindg

SNat Z2 :: *

Nat :: *
Z :: Nat

SNat:: Nat ->*

Valueg

S(S Z)::Nat

s Nat -> Nat




Let's take a step back — types versus values

 Types are static; values are dynamic

 Type erasure property: types don't impact a program's semantics

 Types characterise part of a programs behaviour:
» Each value has a unique type, but usually a type stands for many values
» In contrast: a singleton types has a unique value

-+ Singleton types lift data from the value to the type level

- How about computations (functions) on the type level?




Type families

* There are two forms of type families in Haskell

» Type synonym families: effectively provide functions on types

» Data type families: essentially are a form of open (or, extensible) GADTs
- We will focus on type synonym families, which differ from value functions:

» They need to be terminating — how do we know (halting problem)?

» Limited syntax and obviously no side effects

» They are extensible (like type classes)




Computing with types

- With type families, we can define arithmetic operations on type-level
numerals

- We can also tie type-level to value-level computations

type family (+) (n :: Nat) (m :: Nat) :: Nat




